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1. EXECUTIVE SUMMARY 
 
A database of fishing effort, catches and mean fish weight by two Peruvian fleets and 
two Ecuadorian fleets since January 2004 and up to December 2019, at monthly time steps, 
was built to conduct a stock assessment of the dolphinfish stock in the South East Pacific. 
A hierarchical statistical inference framework connected a multiannual multi fleet 
generalized depletion model using catch, effort and mean weight data, to a surplus 
production model of the Pella-Tomlinson type fitted to annual biomass predictions of the 
depletion model. To fit the surplus production model a further database of total annual catch 
back in time to 1988 was created from FAO landings statistics of fleets from both countries. 
The biomass dynamics in the surplus production model included environmentally driven 
forcing that changed the values of parameters in the model during warm, El Niño Southern 
Oscillation (ENSO) years versus during cold, normal periods of the environmental cycle. The 
model was written in R (depletion model) and ADMB (surplus production model). 
 
Among 36 variants of the depletion model, differing in the timing of annual recruitment  
pulses, the likelihood model for the data, and the numerical method for optimization, the best 
model estimated very high natural mortality rates (0.339 per month) with good statistical 
precision (5% CV). Annual recruitment pulses to the whole region and the four fleets varied  
from a few million to a few hundred million fish, and catches were generally proportional 
to fishing effort and hyperstable to abundance. Aggregate and instantaneous exploitation 
rates (as well as fishing mortality) were well within sustainable levels for the whole length 
of the time series 2004-2019. 
 
The analysis of NOAA El Niño 1+2 indicator determined the existence of a cycle of four 
periods. A cold, normal period between 1988 and 1996, a warm, ENSO period between 1997 
and 2002, a further cold period between 2003 and 2004, and a final warm period between 
2014 and 2019. This environmental cycle caused a biomass dynamics in the stock that 
changed the intrinsic population growth rate from cold to warm periods, with the latter 
having higher intrinsic population growth rate and no change in other parameters of the 
biomass dynamics. 
 
The environmental cycle produced changing annual sustainable harvest rates, with the cold 
part of the cycle yielding higher harvest rates. In both phases of the environmental cycle, the 
annual catches aggregated across all four fleets were well below sustainable harvest rates. 
This further confirms that the fishing of the dolphinfish stock in the South East Pacific is 
being conducted within sustainable limits. 
 
During warm, ENSO years the stock experiences much wider fluctuations than during cold, 
normal periods. This shows that the environmental cycle is superimposed onto intrinsic 
population fluctuations that get triggered to a higher level whenever the region enters the 
warm part of the cycle. This further highlights the importance of ecosystem considerations 
for management oriented to sustainability. 
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2. INTRODUCTION 
 
The dolphinfish is a large epipelagic and migratory species from tropical and subtropical 
oceans that has been fished in all regions where it is found since ancient times [1]. The 
species is captured in large volumes (thousand tonnes) in the Western Indian Ocean (Iran 
and Pakistan), North West Pacific (Taiwan), Western Central Pacific (Indonesia), Western 
Mediterranean (Italy, Tunisia, Spain and Malta) and the South East Pacific (Peru and 
Ecuador) [2]. It is also captured in the Caribbean [3] and Florida and North Carolina, 
U.S.A [4]. The largest landings occur in the South East Pacific and in particular the 
Peruvian fishery is the largest dolphinfish fishery in the world [2]. In the Exclusive Economic 
Zones (EEZ) of both Peru (815,915 km2) and Ecuador (1,077,231 km2, including the Galapagos 
archipelago) (Figure 1) the dolphinfish is an important fishery resource captured by local 
artisanal fleets using drifting longlines. 
 
Although the species sustains large total landings worldwide, well exceeding 100 thousand 
tonnes in the last decade (Figure 2, top panel), the stock assessment of local stocks 
remains difficult due to scarcity of data and fast population dynamics. Nevertheless, several 
authors have attempted various stock assessment methods in their areas of operation. 
Benjamin and Kurup [5] applied yield per recruit and virtual population formulas to the 
stock fished off the South West coast of India to conclude that the stock is fished within 
sustainable levels. Baset et. al. [6] applied non equilibrium surplus production models 
to the dolphinfish catch records and (apparently unstandardized) annual CPUE indices of 
abundance from the Pakistan fishery using the CEDA stock assessment package [7].  
 
This method depends on an assumption of depletion degree (0 to 90%) at the start of the 
time series and in Baset et. al. application, results varied widely depending on the value 
assumed, from MSY equal to a few thousands tonnes at low starting depletion degree 
values to a few million tonnes at high starting depletion degree values. Nevertheless, the 
authors concluded that the stock was being overfished due to catches larger than the 
most reasonable MSY estimates. Aires-da-Silva et. al. [8] conducted an exploratory stock 
assessment of the stock fished in the South East Pacific, namely within the Peruvian and 
Ecuadorian EEZs (Figure 1) using a length structured model with monthly time steps in the 
Stock Synthesis package [9]. Although this assessment was technically more advanced than 
the assessments cited above and it could be considered as datarich and conventional, it 
included several parameters fixed at arbitrary values chosen by the analysts, such as the 
natural mortality rate, the steepness of the stock recruitment relationship, and other 
parameters that resulted in giving more weight to specific pieces of data. The authors 
conclude that recent catches (up to June 2015) were close to the estimated MSY but that the 
fishing mortality that yields the MSY is undefined due to a flat yield per recruit curve. Finally, 
in the Mediterranean Sea the General Fisheries Commission for the Mediterranean (GFCM) 
of the Food and Agriculture Organization of the United Nations (FAO) has been working on 
the assessment and management of the dolphinfish stock that migrates into the 
Mediterranean every summer and is fished there by artisanal fleets from several countries. 
In 2019 the working group assigned with the assessment of the stock recommended the 
implementation of generalized depletion models [10] and published a substantial review of 
dolphinfish biology and its fisheries [11]. 
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Subsequently, the working group developed a customized version of generalized depletion 
models [12, 13, 14, 15, 16, 17] in software CatDyn [18] and applied it to the data from 
five fleets operating in the Western Mediterranean Sea [19, 20]. This was reported as the first 
stock assessment that succeeded in yielding management useful results. It showed that the 
stock was being fished in sustainable manner in the region and developed biological reference 
points connected to the instantaneous exploitation rates [20]. 
 

 

Figure 1. Map of Peruvian and Ecuadorian EEZs where the fishery is conducted. 
 
The dolphinfish Peruvian and Ecuadorian fisheries are clearly the largest dolphinfish fisheries 
worldwide, accounting for nearly 50% of worldwide dolphinfish catches since 2013 (Figure 
2, top panel). They have been described as data poor fisheries and the stock dynamics as 
highly productive, variable and fast, making the stock assessment by conventional methods 
difficult to apply [21]. 
 
In this work, we have adapted the multi annual generalized depletion model built for the 
assessment of the dolphinfish stock in the Mediterranean Sea [20] to the situation of the 
fishery in the South East Pacific, namely Peruvian and Ecuadorian EEZs. The main 
changes in the depletion model developed for the South East Pacific as compared to the 
Mediterranean were that the number of fleets changed from five to four and the time 
series extended from January 2004 to December 2019. 
 
Building upon the work done in the Mediterranean, here we further use results of the 
depletion model in a hierarchical inference statistical framework to fit a environmentally 
driven non equilibrium surplus production model of the Pella-Tomlinson type. Parameters 
of these model are time varying following well known environmental cycles of warming and 
cooling from the El Niño Southern Oscillation [22]. We present results useful for management 
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in the form of instantaneous and aggregate exploitation rates, biomass levels that support 
sustainable exploitation, and catch rates that take into account the productive capacity 
of the stock. 
 

 

Figure 2. World and country landings and contrast between catch data in the stock 
assessment database and in FAO databases [23] for the two countries. 
 

3. MATERIALS AND METHODS 
 
The general approach to the stock assessment of the dolphinfish stock in the South East 
Pacific (Peruvian and Ecuadorian EEZs) is portrayed in schematic fashion in Figure 3 and 
consists of (1) developing and curating a database of monthly total catch, monthly total 
effort, and sampled mean monthly weight from four fleets (two artisanal fleets in each 
country) for the period of January 2004 to December 2019, (2) fitting several variants of 
generalized depletion models and selection of the best variants in terms of numerical, 
statistical and biological criteria, and (3) use output from the best generalized depletion 
model to fit an environmentally driven surplus production model. Steps (2) and (3) yield 
several management useful quantities that constitute potential biological reference 
points (BRPs). 



 

7 
 

 

 

Figure 3. Schematic representation of the stock assessment modelling approach. At 
Stage 1, catch (C), fishing effort (E) and mean weight in the catch (W) data at monthly 
time steps from Jan. 2004 to Dec. 2019 is used to fit a multiannual four fleets generalized 
depletion model. From the output of this model, annual biomass estimates (B, 2004 to 
2019) and their standard errors (S) in addition to total annual catch (C, 1988 to 2019) 
are used in Stage 2 to fit a time varying parameters Pella Tomlinson model. Eight 
alternative hypotheses are tested: constant parameters (null hypothesis) and seven 
alternative hypotheses where parameters K, p and r vary singly or in pairs or trios from 
warm to cold water regimes. 
 

3.1. Data 
 
The database described in this subsection was compiled as a spreadsheet and then it was 
imported to the R system of statistical programming [24, 25], where it has been stored as 
a binary repository. 
 
The data consisted of monthly total catch, monthly total effort, and sampled mean 
monthly weight or sample mean length from the Peruvian artisanal longline fleet, which 
operates in coastal and oceanic waters in the Peruvian EEZ, the Peruvian fibreglass boats 
fleet that operates in coastal waters in the Peruvian EEZ, the Ecuadorian artisanal fleet 
operating in coastal and oceanic waters in the Ecuadorian EEZ, and the Ecuadorian fibreglass 
boats fleet that operates in coastal waters in the Ecuadorian EEZ. The Peruvian part of the 
database contained sampled mean weight in the catch that could not be split between 
the artisanal and fibreglass fleets so it was considered as valid for both Peruvian fleets. 
The Ecuadorian part of the database contained sampled mean length in the catch that also 
could not be split between the artisanal and fibreglass fleets so it was considered as valid 
for both Ecuadorian fleets. The period covered was January 2004 to December 2019. When 
aggregated to the annual time step and across both types of fleet per country, the 
Peruvian catch data shows substantial agreement with the data reported to FAO (Fig. 2, 
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middle panel) while the Ecuadorian catch data shows agreement with that reported to FAO 
between 2004 and 2007 and between 2013 and 2019, with substantial differences between 
2008 and 2012 (Figure 2, bottom panel). At this point we considered the new database 
compiled for Ecuador as more accurate than the totals reported to FAO, thus the stock 
assessment was conducted using the newly compiled database, which included a large 
increase in Ecuadorian catches between 2008 and 2012. 
 
The original database compiled for stock assessment had missing data. The pattern of 
missing data is shown in Fig. 4. Over 60% of mean weight data from Peruvian fleets is 
missing, followed by fishing effort by the Ecuadorian fibreglass fleet at over 40%, and the last 
significant amount of missing data being the sample mean length data of Ecuadorian fleets 
(Figure 4, left panel). Most months (60) are missing mean weight in the catch of the Peruvian 
fleets and fishing effort by the Ecuadorian fibreglass fleet, with another large number (34) 
just missing mean length in the catch of Ecuadorian fleets (Figure 4, right panel). 
 
To replace all missing data with realistic imputed values, a standard statistical methodology 
for the imputation of indispensable missing data was implemented: predictive mean 
matching in R package mice [26]. This method consists of the following steps: 
 

• Carry out multiple linear regressions on the available data to predict the missing data. 
We had five completely observed variables (year, month, total catch of the 
Peruvian artisanal fleet, total effort of the Ecuadorian fibreglass fleet, and total 
catch of the Peruvian fibreglass fleet) and three nearly completely observed 
variables (total catch of the Ecuadorian artisanal fleet, total fishing effort of the 
Ecuadorian artisanal fleet, total fishing effort of the Peruvian artisanal fleet), so 
predictions are expected to be accurate. This produced slope estimates and 
their covariance matrix. 

• Random sample slope values from the multivariate normal distribution created by 
slope estimates and their covariance matrix. By including the covariance matrix 
this step produces natural variability so predictions of missing data would look more 
realistic. 

• Use the randomized slope values and observed data to predict the whole set of 
data, including in months in which true values were observed and were missing. 

• For missing data, find the set of observed data that most closely resembles the 
same data in the missing effort months. 

• Take one random value for each predicted datum from the set of predicted data 
that belongs with the observed data that most closely resembles the current 
missing data. 
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Figure 4. Pattern of missing data in the original database compiled for stock assessment 
of the stock of dolphinfish in the South Eastern Pacific (Peru and Ecuador). The left panel 
is a histogram of months with missing data per variable. The right panel is the number 
of months missing data at particular combinations of the variables. The variables are 
Weight Per: mean weight in Peruvian catches; EffEcuFib: total fishing effort in the 
Ecuadorian fibreglass fleet; LengthEcu: mean length in Ecuadorian catches; CatEcuFib: 
total catch in the Ecuadorian fibreglass fleet; EffPerArt: total fishing effort in the 
Peruvian artisanal fleet; EffEcuArt: total fishing effort in the Ecuadorian artisanal fleet; 
CatEcuArt : total catch in the Ecuadorian artisanal fleet; CatPerArt : total catch in the 
Peruvian artisanal fleet; EffPerFib: total fishing effort in the Peruvian fibreglass fleet; and 
CatPerFib: total catch in the Peruvian fibreglass fleet. 
 
In this manner we assembled a complete database for stock assessment. Finally, mean 
length data in the catch of Ecuadorian fleets was used to calculate mean weight in the 
catch of those fleets. For this we used the length-weight relationship in Zúñiga-Flores 
[27], determined from dolphinfish samples of fork length and weight taken in Baja 
California, Mexico. The resulting effort and catch data is shown in Figure 5. The best 
effort catch relationship is observed in the Peruvian fibreglass fleet, followed by 
Peruvian artisanal fleet. Ecuadorian data show over dispersion (fibreglass) and weak 
determination of catch from effort for a wide range of effort (artisanal). 
 
Generalized depletion models predict the catch by time step in numbers, not in weight. 
Therefore the monthly catch recorded in weight in the database needed to be 
transformed to numbers by using the the time series of mean weight. The complete 
mean weight time series is shown in Fig. 6. There is ample intra-annual variability in both 
time series, as expected given the very fast growth rate that characterizes the species 
[11]. Ecuadorian fleets seem to catch larger fish than Peruvian fleets. 
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Figure 5. Effort and catch data in four fleets operating in the South East Pacific (Peru and 
Ecuador). PerArt: Peruvian artisanal; PerFib: Peruvian fibreglass; EcuArt: Ecuadorian 
artisanal; EcuFib: Ecuadorian fibreglass. 
 

 
Figure 6. Mean weight time series used to transform catch in weight to catch in numbers. 
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× 

3.2. Generalized depletion models 
 
The stock assessment methodology employed here has been described in several recent 
scientific articles [12, 28, 13, 29, 14, 15, 16, 17, 18, 30, 31, 20].  The model developed 
for  this case is an extension of multi annual generalized depletion models [13, 16, 31]. 
These  models run at monthly time steps and analyze the data from several annual fishing 
season   simultaneously. The models contain parameters for initial abundance, the average 
natural mortality rate over the period of years covered by the time series of data, the 
magnitude of annual recruitment pulses to each fleet (i.e. there is a total number of 
number of years × number of fleets, 16 × 4 = 64 recruitment parameters) and three 
fishing operational parameters that are fleet specific (i.e. 3 × 4 = 12 fishing operational 
parameters). These models are fully mechanistic models in which all parameters are 
estimated freely, not fixing any parameter at arbitrary values. The generalized depletion 
model specific to this case has 78 parameters to estimate and is of the form: 
 

 
where: 
 

• t is the time step (month), 
• C is the unobserved, true catch in numbers, 
• k is a proportionality constant, the scaling, that corresponds to the catch taken 

by a unit of effort and a unit of abundance, usually in the order of 10−4 to 10−8, 
• E is the observed fishing effort in hours, 
• N is the latent stock abundance in numbers, 
• α is a dimensionless modulator of effort as a predictor of catch, called the effort 

re sponse, 
• β is a dimensionless modulator of abundance as a predictor of catch, called the 

abundance response, 
• M is the natural mortality rate with units of month-1, 
• m equals eM/2, 
• N0 is the initial abundance, the abundance at month before the first month in 

the effort and catch time series (December 2014), 
• i is an index that runs over previous time steps and up to the current time step 

(t), 
• R are the magnitudes of annual pulses of recruitment of dolphinfish that grow to 

the size retained by the fishers to each of the fletes, 
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• I is an indicator variables that evaluates to 0 before the recruitment pulse and 
to 1 during and after the recruitment pulse, 

• 16 is the number of recruitment pulses, one for each year, happening at a 
specific month each year, with j being the counter that runs from 1 to 16, and 

• τ  is the specific month at which each recruitment pulse happens. 
 
Parameters M, N0, and the 64 recruitment magnitudes are stock abundance parameters 
while k, α and β are fishing operational parameters. The conceptual basis of this model 
is presented in the first line of Eq. 1. The true catch at each month C is the product of 
the fishing effort E expended that month and the latent stock abundance that month, 
and this product is scaled by the scaling k. The model allows for zero catches in some 
months either because there was zero effort or there was zero abundance. The model 
is a mechanistic model because it ascertains a specific cause effect: effort and 
abundance are necessary causes and the catch is the effect. In the second line of Eq. 1 
the model is completed by using Pope’s recursive expansion plus the effect of 
recruitment pulses to fully specify the mathematical form of Ct. 
 
Parameters α and β are power modulators of the effect of both predictors on the true 
catch that enable discovery of nonlinear effects. Specifically, the effort response α 
modulates the continuum of effort saturation (α < 1) ↔ proportionality (α ≈ 1) ↔ 
synergy (α > 1) and the abundance response β modulates the continuum of abundance 
hyperstability (β < 1) ↔ proportionality (β ≈ 1) ↔ hyperdepletion (β > 1). Effort 
saturation occurs when a fishing gear becomes full quickly so any additional unit of effort 
does not produce a proportional increase in catch, while the opposite effect, effort 
synergy occurs when additional units of effort produce more additional catch than 
expected under proportionality. Abundance hyperstability happens when declining 
stock abundance is not reflected in less catch, while abundance hyperdepletion happens 
when the catch decreases faster than the decline in the stock. Effort saturation may 
happen when fishing gears are small, for instance a crab trap may not catch more crabs 
even though it stays longer time because it is full of crabs. Effort synergy happens when 
fishing gears work better when there are more of them, for instance traps that have 
baits, which when larger in number, create a greater area of attraction to the target 
stock. Hyperstability is common in fisheries that capture aggregations of fish since the 
catch may remain high even when aggregations are being depleted because the fish will 
aggregate again as the gear thins the aggregation making it possible for the fishers to 
continue having high catches as abundance decreases. Hyperdepletion happens when 
fishing gears scare the fish away so it seems from the fishers point of view that the stock 
is being depleted while the reality is that the stock is being dispersed. 
 
In the model, total recruitment to the stock in any year is the sum of the recruitments 
to each fleet: Ry = R1,y + R2,y + R3,y + R4,y, where y is the year, and the concept behind 
this additivity is that each fleet ’sees’ a part of the total recruitment. 
 
Using the catch in numbers and effort time series for sufficiently long time series (i.e. when 
the number of time steps is several times the number of parameters) allows simultaneous 
estimation of N0, M, k, the recruitment pulses Rj, α, and β. The timing τj of recruitment pulses 
are estimated by fitting models with varying configurations of τj and then selecting the 
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configuration best supported by the data. These configurations are defined by a range of 
possible integer values for τj, that translate into a range of time steps across which 
recruitment might take place. To identify these parameters, the model is run with alternative 
values. The values that maximize the likelihood (when the likelihood model is comparable 
across model fits) and/or are best according to other criteria (see below), are chosen. In this 
work models were fitted with 3 options for the timing of these pulses τj. Good candidate 
value for the timings were determined by examination of the non-parametric catch spike 
statistic, defined as [13], 
 

 
 
where χ is the observed catch. It highlights time steps with excessively high catch for 
the effort at that time step. Thus large positive spikes suggest recruitment pulses. See 
Figure 3 in Roa-Ureta et al. [28] for a graphical demonstration of the use the spike 
statistic. The use of the non-parametric statistic is not arbitrary because the best 
configuration is selected as the model with the configuration that maximizes the 
likelihood function. 
 
The model in Eq. 1 describes the deterministic process that generates the expected catch 
under the model. The statistical framework is completed by taking the four observed catch 
time series as random variables whose mean time series is Eq. 1 with realized time series 
coming from any of a number of distributions. These distributions define the likelihood 
function that is to be maximized. Among these, the normal and lognormal distribution have 
simple formulas for the adjusted profile likelihood, an approximation that eliminates the 
dispersion parameter from the estimation problem. Models were fitted with the adjusted 
profile normal, adjusted profile lognormal, exact normal and exact lognormal likelihoods. 
Formulas used are all listed in [16, Table 2]. 
 
Generalized depletion models were fitted using a customized version of R package CatDyn 
[18]. All parameters are free parameters to be estimated, none of them is fixed at 
arbitrary values. The latest version also estimates fishing mortality per time step by using 
a numerical resolution (R function uniroot) of the Baranov equation from estimates of 
abundance, natural mortality and (observed and estimated) catch per time step. CatDyn 
depends on package optimx [32], which makes it simple to call several numerical 
optimization routines as alternatives to minimise the negative log likelihood. The spg and 
the CG numerical routines were employed because these have yielded reliable results in 
previous applications [12, 28, 13, 29, 14, 15, 16, 17, 18, 30]. The combination of options for 
timing of those pulses, likelihood function, and numerical optimization routine led to fitting 
36 alternative model variants for the effort and catch (in numbers) time series. We selected 
the best model by employing the following numerical, biological and statistical criteria. 
Firstly, all fits returning a numerical gradient higher than 1 for parameters determining the 
estimation of abundance and biomass (M, N0, and the 64 recruitment magnitudes) were 
eliminated. This is a commonly employed criterion in stock assessment [33, 34, 35, 36]. 
Secondly, variants yielding unrealistic values of the natural mortality rate (i.e. less than 0.1 
per month) given the known lifespan of the dolphinfish were also excluded). Thirdly, from 
the short list of model fits, the best fit was selected as the one with the lowest standard 
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errors and with the histogram of correlation coefficients between parameter estimates more 
concentrated around zero. The histogram of correlation coefficients presents the distribution 
of pairwise correlations between parameter estimates. It is desirable that these 
correlations are as far away from 1 or -1 as possible because that means that each 
parameter was a necessary component of the model. Information theory model selection 
methods such as the Akaike Information Criterion (AIC) are also useful at this stage when 
comparing models run with the same likelihood or approximation to the likelihood. 
 
Directly from results of fitting generalized depletion model, it is possible to calculate  two 
measures of exploitation rate: aggregated (catch in numbers over abundance) and 
instantaneous (F/(F + M ) = F/Z), where F is the fishing mortality rate. F is calculated 
in the software by resolving F from knowledge of catch (in numbers), abundance and natural 
mortality M using Baranov’s catch equation: 
 

 
 
Both measures of exploitation rate can be used directly for management but particularly for 
the instantaneous exploitation rate, there is a study demonstrating that for stocks with 
the life history of small pelagic fish instantaneous exploitation rates less than 40% maintain 
a stable and sustainable spawning biomass [37]. Although the dolphinfish is not a small 
pelagic it has a similar life history as small pelagic fish. 
 

3.3. Population dynamics models 
 
Generalized depletion models estimate abundance at the start of the time series in the N0 
parameter. Abundance then drops and is reset to a higher value with every input of 
abundance due to recruitment, one for each year in the time series. Therefore, for each 
year, total initial abundance (i.e. in January of each year) can be obtained by rolling back 
recruitment pulses from the month of recruitment and adding that to abundance in December 
of the previous year. Rolling back entails using the natural mortality rate estimate M with 
reversed sign. Knowing also the mean weight per month (Figure 5), monthly abundance 
can be transformed into biomass, Bt. The function CatDynBSD in CatDyn does this calculation 
using the delta method to propagate statistical uncertainty in N0, M, and mean weight, 
to Bt. 
 
The estimated biomass time series extends at monthly time steps over the complete time 
series, but selected stock’s biomass at a particular month to fit a surplus production model.  
This month was the month at which the mean coefficient of variation (CV) of the biomass 
estimate was the lowest, i.e. the month of the typically highest statistical precision. The 
main purpose of using a particular month of biomass estimate from each year is to have an  
annual time step in the surplus production model. Having an annual time step is convenient 
because it is possible to use the landings from years prior to 2015 as additional data to 
fit the surplus production model. Selecting the month with the least average (across 
years) CV of the biomass estimate helps have more precise estimates of parameters in the 
surplus production model. 
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The South East Pacific region is affected by the periodic occurrence of the El Niño 
Southern Oscillations (ENSO) leading to multi-annual periods of increased water 
temperature followed by multi-annual periods of colder or normal temperature [38]. These 
environmental oscillations may well affect the stock’s population dynamics. We used NOAA’s 
ENSO index [22] to define four environmental phases during our study period (Fig. 7). 
Then we defined eight hypotheses of biomass dynamics during the study period (Fig. 3). 
The first hypothesis was the null hypothesis that the biomass dynamics was a conventional 
Pella-Tomlinson dynamics with constant parameters during the whole study period, i.e.: 
 

 
where: 
 

• r is the intrinsic population growth rate, 
• p is the symmetry of the production function, 
• K is the carrying capacity of the environment, 
• By is the biomass estimated from generalized depletion models, and 
• Cy−1 is the total annual catch during the previous fishing season. 

 

 
 

Figura 7. Trend of the NOAA ENSO index and the four environmental phases identified 
during the study period. It was obtained from a time series analysis and a breakpoint 
function to determine the environmental phases. 
 
The seven alternative hypotheses were that the biomass dynamics, i.e. the Pella- 
Tomlinson model, had time varying parameters that followed the environmental cycle. Thus 
the first alternative hypothesis had carrying capacity K varying from K1 to K2 to K1 to K2 
during the environmental phases of cold, warm, cold and warm periods in Figure 7. The 
second alternative hypothesis had the symmetry of the production function p varying from 
p1 to p2 to p1 to p2 during the four phases of the environmental cycle. The third hypothesis 
had the intrinsic population growth rate k varying from r1 to r2 to r1 to r2 during the four 
phases of the environmental cycle. The subsequent four hypotheses had pairs of parameter 
varying with the environmental cycle or all three parameters varying with the 
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environmental cycle.  In addition, we fitted each of these seven hypotheses in two variants, 
having initial biomass (in 2003) as a separate, fourth parameter in Pella-Tomlinson model 
or having it equal to the carrying capacity K. We selected the best working model by 
recourse to the Akaike Information Criterion (AIC) and further consideration of optimization 
quality criteria such as having all gradients close to zero and well defined Hessian 
matrices. 
 
The annual biomass and its standard deviation from fitting generalized depletion models and 
the annual biomass predicted by fourteen variants of the Pella-Tomlinson model are linked 
through a hybrid (marginal estimated) likelihood function, 

 

 
 
where: 
 

 
 
From the fit of Pella-Tomlinson model, several biological reference points were 
calculated depending on the prevailing dynamics of the stock. The reference points were 
the MSY: 

 
the biomass at the MSY, 

 
and the latent productivity, 

 
For each biological reference points, standard errors were computed using the delta 
method. 
 
With reference to the latent productivity [39], this is a biological reference point analogous 
to MSY, but while MSY is a constant, the latent productivity varies with the biomass of 
the stock (compare Eq. 5 to Eq. 7). Thus the latent productivity is more relevant for stocks 
that tend to fluctuate because of environmental forces or because of their intrinsic 
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population dynamics. For instance, in Roa-Ureta et al. [14] we found that the stock under 
study was fluctuating because of a high value of the intrinsic population growth rate, r. Thus 
MSY was not applicable and it was actually an excessive harvest rate. In the present case, 
if the stock was found to have a stationary equilibrium, MSY and BMSY were computed 
as biological reference points, while if the stock was found to be fluctuating, the latent 
productivity was computed as the biological reference point. Both MSY and latent 
productivity can be used directly as sustainable harvest rates. 
 
The analysis at this stage was programmed in ADMB [40] using ADMB-IDE 10.1 64 bits [41]. 
We created ADMB code for each of the eight environmental influence hypotheses and 
starting annual biomass leading to sixteen ADMB programs. Taking advantage of facilities of 
the ADMB system, parameter estimation was carried out by bounded or unbounded 
optimization, depending on the parameter and the model variant. 
 

4. RESULTS 
 

4.1. Generalized depletion models 
 
A total of 36 generalized model variants were fitted using CatDyn across the 192 months of 
effort and catch data by the four fleets, half of them using the spg and half the CG numerical 
methods for optimization. Initially, a set of 32 variants were fit with a specific assumption 
regarding the timing of the 64 recruitment events. Only two of those variants yielded a 
natural mortality rate higher than 0.1 per month and all variants predicted unrealistically 
high biomass. Three variants, characterized by the following specifications: 
 

• variant 25: CG optimization algorithm, adjusted profile normal for the Peruvian 
artisanal fleet and the Peruvian fibreglass fleet, adjusted profile lognormal for the 
Ecuadorian artisanal fleet and the Ecuadorian fibreglass fleet, 

• variant 29: CG optimization algorithm, adjusted profile normal for the Peruvian 
artisanal fleet, the Peruvian fibreglass fleet, the Ecuadorian artisanal fleet, and 
adjusted profile lognormal for the Ecuadorian fibreglass fleet, 

• variant 31: CG optimization algorithm, adjusted profile normal for the catch data 
off all fleets, 

 
These three variants were refitted using different starting values for recruitment parameters 
leading to variants 33, 34 and 35. These three additional variants yielded realistic biomass 
predictions and realistic natural mortality rate estimates. Variant 35 yielded the best 
correlation structure (Figure 8) and lowest standard error of estimates. Small adjustments 
to the timing of some recruitment events in variant 35 led to fitting variant 36. 
 
The AIC, useful to compare variants 35 and 36 because they were fit with the same 
likelihood model, was not conclusive. Nevertheless, variant 36 had only two gradients (for β 
of the Peruvian artisanal fleet and k of the Ecuadorian fibreglass fleet) larger than 1, less than 
all other 35 variants. Furthermore, had the best correlation structure (Figure 8), reasonable 
natural mortality rate estimate and biomass predictions, and high statistical precision of the 
estimates for natural mortality rate and initial abundance, N0. Thus variant 36 was selected 
as the best generalized depletion model to fit the catch data of the four fleets. 
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Figure 8. Correlation structure of estimates of the short list of four best variants of 
generalized depletion models fitted to catch data of the four fleets. The title of each 
histogram indicates the likelihood model (apn is adjusted profile normal and apln is adjusted 
profile lognormal for each fleet, numerical algorithm used for optimization, and model 
variant number yielded the lowest biomass estimates and one of them also yielded a higher 
natural mortality estimate. 
 
The fit of variant 36 to the data from the four fleets is shown in Figures 9-12. It can 
be seen in Figure 9 that the selected model closely follows the catch data from the 
Peruvian artisanal fleet. Diagnostics plots at the bottom panels show good consistency 
with the model’s assumptions, with a symmetric histogram of residuals, a shapeless cloud of 
residuals, and a diagonal quantil-quantile plot. "Biomass" is predicted biomass in the last 
month, December 2019, and "Catch" is the total catch by the four fleets in the last year, 
2019. 
 



 

19 
 

 

Figure 9. Top panel: Fit of the generalized depletion model to the Peruvian artisanal fleet 
catch data (top panel), with target symbols indicating the timing of annual recruitment. 
The catch is the total catch by all fleets in the last year, and the biomass is the biomass 
at the last month of the times series (December 2019). Bottom panels: from left to right, 
histogram of deviance residuals, deviance residual cloud, and quantile-quantile plot. 
 
Parameter estimates from the selected generalized depletion model are presented in 
Tables 1-4. Monthly natural mortality M is very high, as expected considering the short life 
history of the dolphinfish [11]. Initial abundance N0 was in the order of a hundred million. 
Recruitment estimates to the Peruvian artisanal fleet (Table 1) vary from a few million 
to several hundred million. Catches are nearly proportional to effort and hyperstable to 
abundance. Recruitment estimates to the Peruvian fibreglass fleet (Table 2) vary from a few 
hundred thousand to a few hundred million. Catches are nearly proportional to both effort  
and abundance. Recruitment estimates to the Ecuadorian artisanal fleet (Table 3) vary from 
a few hundred thousand to a few tens of million. Catches are synergistic to effort and 
hyperstable to abundance. Recruitment estimates to the Ecuadorian artisanal fleet (Table 3) 
vary from a few hundred thousand to a few tens of million. Catches are proportional to effort 
and hyperstable to abundance. Many standard errors (and thus CVs) could not be 
calculated signifying problems with the curvature of the likelihood function close to the 
maximum. 
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Table 1. Directly estimated parameters corresponding to the Peruvian artisanal fleet of the 
best generalized depletion model (variant 36) fitted the 192 months (2004 to 2019) of effort  
and catch data of the the dolphinfish fishery in the South East Pacific. Variant 36 was fitted 
with the adjusted profile normal distribution for all four fleets, the CG numerical algorithm,  
recruitment timings as suggested by the catch spike statistic with a few adjustments. MLE: 
maximum likelihood estimate. CV: coefficient of variation. CVs not shown correspond to 
optimization failures for second order properties at particular parameters. 

 
 
The model indicates that the catch taken during the last year of the time series was only 12% 
of the biomass left available at the end of the year, which is a very moderate exploitation 
rate. The fit of the model to the data from the Peruvian fibreglass fleet is even better 
(Figure 10) with excellent agreement between model and data (top panel), symmetrical 
residual histogram, shapeless residual cloud, and excellent quantile-quantile plot. However, 
the fit of the model to the Ecuadorian artisanal fleet (Figure 11) is much poorer, with 
numerous high  catches that are not well followed by the model (top panel), skewed residual 
histogram, and far from diagonal quantile-quantile plot. The fit of the model to the 
Ecuadorian fibreglass fleet (Figure 12) is somewhat better though still poor, with 
numerous high catches not well predicted by the model (top panel), slightly skewed 
residual histogram (month 181 is a highly positive residual), nearly shapeless residual cloud 
(except for month 181), and nearly all lower quantiles following on the diagonal. 
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Figure 10. Top panel: Fit of the generalized depletion model to the Peruvian fibreglass fleet 
catch data (top panel), with target symbols indicating the timing of annual recruitment. 
The catch is the total catch by all fleets in the last year, and the biomass is the biomass 
at the last month of the times series (December 2019). Bottom panels: from left to right, 
histogram of deviance residuals, deviance residual cloud, and quantile-quantile plot. 
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Table 2 . Directly estimated parameters corresponding to the Peruvian fibreglass fleet 
of best generalized depletion model fitted (variant 36) the 192 months (2004 to 2019) of 
effort and catch data of the the dolphinfish fishery in the South East Pacific. MLE: 
maximum likelihood estimate. Variant 36 was fitted with the adjusted profile normal 
distribution for all four fleets, the CG numerical algorithm, recruitment timings as 
suggested by the catch spike statistic with a few adjustments. CV: coefficient of 
variation. CVs not shown correspond to optimization failures for second order properties 
at particular parameters. 
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Figure 11. Top panel: Fit of the generalized depletion model to the Ecuadorian artisanal 
fleet catch data (top panel), with target symbols indicating the timing of annual recruitment. 
The catch is the total catch by all fleets in the last year, and the biomass is the biomass 
at the last month of the times series (December 2019). Bottom panels: from left to right, 
histogram of deviance residuals, deviance residual cloud, and quantile-quantile plot. 
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Table 3. Directly estimated parameters corresponding to the Ecuadorian artisanal fleet of 
best generalized depletion model fitted (variant 36) the 192 months (2004 to 2019) of effort 
and catch data of the the dolphinfish fishery in the South East Pacific. MLE: maximum 
likelihood estimate. Variant 36 was fitted with the adjusted profile normal distribution 
for all four fleets, the CG numerical algorithm, recruitment timings as suggested by the 
catch spike statistic with a few adjustments. CV: coefficient of variation. CVs not shown 
correspond to optimization failures for second order properties at particular parameters. 
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Figure 12. Top panel: Fit of the generalized depletion model to the Ecuadorian fibreglass 
fleet catch data (top panel), with target symbols indicating the timing of annual recruitment. 
The catch is the total catch by all fleets in the last year, and the biomass is the biomass 
at the last month of the times series (December 2019). Bottom panels: from left to right, 
histogram of deviance residuals, deviance residual cloud, and quantile-quantile plot. 
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Table 4. Directly estimated parameters corresponding to the Ecuadorian fibreglass fleet of 
best generalized depletion model fitted (variant 36) the 192 months (2004 to 2019) of effort 
and catch data of the the dolphinfish fishery in the South East Pacific. Variant 36 was fitted 
with the adjusted profile normal distribution for all four fleets, the CG numerical algorithm, 
recruitment timings as suggested by the catch spike statistic with a few adjustments. MLE: 
maximum likelihood estimate. CV: coefficient of variation. CVs not shown correspond to 
optimization failures for second order properties at particular parameters. 

 
 
The aggregate exploitation rate is very low, reaching a maximum of 0.006% fish caught with 
respect to total abundance happening over the sixth year of the time series, while 
usually at every month total catch takes 0.0002% of all available fish (Figure 13, top 
panel). The instantaneous exploitation rate (Figure 13, middle panel) remains most of 
the months under 40%, the reference point obtained by Patterson [37], crossing that 
threshold just a few times and for one month periods. The biomass and catch time series 
shows that at specific months in each year total catch in biomass approaches stock biomass 
while most of the months the latter is much higher than the former. 
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Figure 13. Top panel: Aggregate exploitation rate for each fleet and in total. Middle panel: 
instantaneous exploitation rate per fleet and in total. Bottom panel: stock biomass and 
catch in weight. 
 

4.2. Population dynamics models 
 
Estimation of the biomass monthly time series and the standard error of biomass estimates 
using the function CatDynBSD in the extended CatDyn software yielded estimates that 



 

28 
 

on average, were most precise in the month of November, with an average CV of 225%, 
which is very imprecise although less imprecise than in other months. Thus, the biomass 
estimate in November was selected to fit Pella-Tomlinson surplus production model under 
eight hypotheses of environmental influence. 
 
The fitted Pella-Tomlinson dynamics from the best Pella-Tomlinson model (variant 4b in 
Figure 14) as well as biomass estimates from the best generalized depletion model and the 
time series of total annual catch, are shown in Figure 15. Biomass estimates from CatDyn 
running in R and the Pella-Tomlinson surplus production biomass running in ADMB show 
good agreement. The Pella-Tomlinson model shows that the stock has a tendency to undergo 
marked fluctuations and that the most recent status of the stock is the most uncertain part 
of the time series. The stock biomass has been well above landings for a long period that 
ended in 2016, when there was a sharp drop in biomass. This observed decline in biomass 
was followed by an equally fast recovery in stock biomass over the next 2 years. Overall, 
stock biomass shows fluctuation about a constant mean close to 350 thousand tonnes. 
 

 
Figure 14. Pairwise correlations between parameter estimates (including 3 or four 
parameters in Pella-Tomlinson and 33 annual biomass predictions) and model selection 
criteria of sixteen hypotheses for the biomass population dynamics of the dolphinfish stock 
in the South Eastern Pacific. Single regime (top left panels) are null hypothesis models 
with no influence of environmental cycles. Two regimes are hypotheses that involve 
changes in K, p or r singly, or in pairs or the trio of parameters of Pella-Tomlinson surplus 
production model. Panels with a green border are the best working models. 
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Figure 14 shows the pairwise correlations among parameter estimates of Pella-Tomlinson 
surplus production model under sixteen hypotheses of environmental influence. Histograms 
of correlation coefficients that are centered around zero are produced by models with param 
eter that are adequately identifiable (i.e. each parameter play a useful role). Furthermore, 
model variants with the lowest AIC and largest gradient in absolute value close to zero 
are best working models. There are four of these models, marked with a green border in 
Figure 14, and among those four best working models, the variant labelled as 4b in 
Figure 14 had the lowest AIC and the smallest standard errors of parameter estimates. This 
variant corresponded to the hypothesis that the biomass dynamics of the dolphinfish was 
influenced by environmental cycles through changes in the intrinsic rate of growth r. 
 

 

Figure 15. November stock biomass estimated by the best generalized depletion model in 
the extended CatDyn software (variant 36), best Pella-Tomlinson model of population 
dynamics (variant 4b), and total annual catch by four fleets operating in the dolphinfish 
fishery in the South Eastern Pacific. 
 
Parameters of the Pella-Tomlinson model were fitted with good precision (Table 5), both 
those directly estimated by optimization and the derived parameters MSY, BMSY and BP˙. 

The exception is the average total latent productivity (average latent productivity + landings) 
which is estimated with poor precision. The MSY estimate is very high, actually six times 
higher than the average catch of the four fleets over the time series. Conversely, the total 
average latent productivity a little double the average catch of the four fleets over the 
time series. This is because the stock has a fluctuating dynamics and therefore the MSY 
is not applicable. The total average latent productivity is the sustainable harvest rate for 



 

30 
 

fluctuating stocks. Both the estimated intrinsic rate of population growth r and the 
symmetry of the production function p are high, making the stock highly productive. 
 
Table 5. Directly estimated parameters from the best Pella-Tomlinson model (B0, K, r1, 

r2, p) and derived biological reference points (MSY1, MSY2, BMSY , Ṗ1, Ṗ2) for the 

dolphinfish in the South East Pacific according to parameterization in Eqs. 4, 6 8, likelihood 

model in Eq.   5.   Ṗ1 and Ṗ2 are the  annually  averaged  total  latent  productivity  under  the  

cold  and warm environmental regimes, respectively (see Eq. 5). Mean catches during cold 
and warm periods are calculated within the 2004 to 2019 interval of years. BMSY does not 
change from the cold to the warm periods of the environmental cycle because BMSY does 
not depend on r (see Eq. 7). 

 
 

5. DISCUSSION 
 
This study shows that the stock of the dolphinfish in the South East Pacific was being being 
harvested in sustainable fashion up to the last year of the available time series of data (2019). 
In fact, average landings by the four fleets over the 2004 to 2019 period are close to half of 
the sustainable harvest rate in each of two periods in the environmentally driven cycle of 
population dynamics. These harvest rates have been estimated at close to 91 thousand 
tonnes during the cold period and close to 71 thousand tonnes during the warm period. 
Average catches between 2004 and 2019 have been around 42 and 36 thousand tonnes 
in the cold and warm periods, respectively, tracking well the differences in sustainable 
harvest rates estimated here. 
 
Aires-da-Silva et al. [21] have described the combined Peruvian-Ecuadorian fishery as a data 
poor fisheries and have characterized the stock dynamics as highly productive, variable and 
fast. Our results confirm that description by showing that the stock has a high intrinsic rate 
of population growth (r) making it a resilient stock, that may recover quickly from low 
biomass, high mortality rate and fast biomass production function. In addition, the stock has 
a maximum of the production function close to symmetry, though slightly skewed towards 
lower biomass. Parameter are estimated with reasonable precision with the exception of 
initial biomass and the r s. 
 
In their assessment of the same stock Aires-da-Silva et al. [21] concluded that the stock was 
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being harvested at close to MSY levels. Our results here support the overall conclusion that 
the stock is not overfished and not experiencing overfishing but they also indicate that the 
current harvest is well below maximum sustainable harvest rates while Aires-da-Silva et 
al. [21] found that the harvest rate was close to MSY. The difference in results may arise 
from a number of issues acting in conjunction or separately. First, we used different data. 
Our database was more extended (from January 2004 to December 2019) than the database 
compiled by Aires-da-Silva et al. [21] (July 2007 to June 2015). In addition, for the period 
covered by Aires-da-Silva et al. we have higher catches from Ecuadorian fleets between 
2008 and 2012. Second, the stock assessment by Aires-da-Silva et al. is based on length 
frequency data and CPUE indices of relative abundance while our assessment is based on the 
effort catch dynamics (generalized depletion models) and the aggregate biomass dynamics 
(Pella-Tomlinson surplus production model). Aires-da-Silva et al. [21] length structured 
model is more complex from the population dynamics point of view and it has to make 
several assumptions to simplify the problem. Authors list 8 such assumptions but principal 
among these are three: 
 

• Fixed natural mortality rate (M = 1 yr-1 for both sexes); 
• Fixed Steepness (h) of the stock recruitment relationship (h = 1); and 
• The CPUE time series of the Ecuadorian artisanal fishery was chosen as the most 

reliable index of abundance to calibrate the stock assessment model. For this reason, 
its coefficient of variation (CV) was fixed at 0.2. 

 
In this work we have estimated the natural mortality rate from the data, inside the stock 
assessment model, by maximum likelihood and this objective estimate turned out to be 
much higher that the value assumed by Aires-da-Silva et al. [21]. Fixing natural mortality 
too low in a stock assessment would lead to under estimation of fish abundance because 
less fish are needed to explain catches. This alone could explain why Aires-da-Silva et al. 
[21] obtained less dolphinfish abundance than in our assessment. Fixing the steepness 
at a very high value, as done by Aires-da-Silva et al. [21], would ameliorate somewhat the 
under estimation of abundance due to a low fixed value for natural mortality but our results 
show that the natural mortality rate is over 3 times higher than the value assumed by Aires-
da-Silva et al. [21], so any  amelioration caused by fixing the steepness very high may not 
be sufficient to compensate for a too low natural mortality rate. Furthermore, the 
decision by Aires-da-Silva et al. [21] to give more weight to the Ecuadorian CPUE index of 
abundance because it produced a best fit in their assessment, may have negative 
implications. In our analysis, we used a catch and effort database compiled by Ecuadorian 
experts that differed substantially from the time series used by Aires-da-Silva et al. [21], 
especially between 2008 and 2012. Thus their better fit to Ecuadorian CPUE would be an 
artifact of missing catch data. In addition, our results also show that the Ecuadorian data, 
from both fleets, is less well fit to depletion models because of more extreme (high) values 
of catch. This characteristic of the Ecuadorian data may have affected the assessment by 
Aires-da-Silva et al. [21]. Third, we distinguished four fleets operating in the fishery, two in 
each country EEZ, while Aires-da-Silva et al. [21] aggregated all national fleets and added a 
third fleet (tuna purse seiners) yielding bycatch of dolphinfish. National fleets in Ecuador and 
Perú are divided into two groups, artisanal and coastal. The artisanal fleets of both countries 
conduct long fishing trips, extending over several days in oceanic waters, while fibreglass 
boats can only operate in coastal waters for short fishing trips. This aspect may affect the 
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building of aggregate CPUE indices of abundance. 
 
The stock assessment model developed and implemented in this work needs further work to 
calculate standard errors of average total latent productivity estimates. These estimates 
depend on a complex covariance structure between annual biomass estimates and 
parameters of the Pella-Tomlinson model. Further work utilizing the delta method or 
ADMB code is needed to complete these steps. 
 
In the South East Pacific, environmentally driven transitions in population dynamics, 
connected to well know cycles in oceanographic and atmospheric processes in the whole 
Equatorial Pacific, have a significant impact on sustainable harvest rates for fishers operating 
on the dolphinfish stock. Normal or cold periods have higher sustainable harvest rates than 
warm, ENSO periods, and fishers have corresponding lower catches when sustainable harvest 
rates are lower. This happens without knowledge of sustainable harvest rates in cold versus 
warm periods of the environmental cycle. This coincidence implies that there could be 
natural processes that force less fishing yield when productivity is lower in this fishery. 
 
During warm, ENSO periods, the stock experiences wider fluctuations in abundance 
compared with cold, normal periods of the environmental cycle. Nevertheless, these periods 
of warmer waters and wider fluctuations provide a window of opportunity for better 
determination of the population dynamics by the stock assessment model. This is well 
represented by much narrower bands of statistical error around the estimated biomass 
trajectory of the stock. The mathematical reason for wider fluctuations during warm water 
periods is that r is higher. Therefore the environmental cycle drives an intrinsic population 
cycle into wider or narrower fluctuations, thus providing direct evidence of the importance 
of ecosystem considerations when developing best management actions aiming at 
sustainable harvest rates. 
 

6. CONCLUSIONS 
 

1. A stock assessment database of monthly catch, effort and mean weight data for the 
dolphinfish in the South East Pacific (Peru and Ecuador) with the activity of four 
longline fleets, spanning 2004 to 2019, has been compiled from the data collection 
programs of IMARPE and IPIAP experts. 

2. A statistical stock assessment methodology and its code in the R language of 
statistical programming and in ADMB, as well as binary storage of the database 
and programming objects, is now available for updated assessment of the dolphinfish 
in the South East Pacific (Peru and Ecuador) as more data are collected. 

3. The stock assessment methodology was applied to the dolphinfish in the South East 
Pacific (Peru and Ecuador) data and the four fleets generating results with a generally 
acceptable level of statistical precision and biological realism. 

4. Among a set of 36 variants of generalized depletion models, defined by 32 
combinations of likelihood functions per fleet and numerical method of optimization, 
plus 4 adjustments to initial values and some months of recruitment, the best model 
was one with normal distributions for the data from all four fleets and CG numerical 
optimization algorithm. 

5. Natural mortality rates are very high (0.339 per month) and estimated with good 
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statistical precision (5% CV), annual recruitment pulses to the whole region and the 
four fleets vary from a few million to a few hundred million fish, and catches are 
generally proportional to fishing effort and hyperstable to abundance. 

6. Aggregate and instantaneous exploitation rates (as well as fishing mortality) were well 
within sustainable levels for the whole length of the time series 2004-2019. 

7. Analysis of the NOAA indicator of ENSO determined the existence of an environmental 
cycle with four periods, starting with a cold, normal period (1988-1996), followed 
by a warm, ENSO period (1997-2002), followed by a cold period (2003-2014), and 
ending in a warm period (2014-2019). 

8. The biomass dynamics of the stock in the region is driven by environmental cycles 
connected to the ENSO, leading to changes in the intrinsic rate of population growth. 

9. During warm, ENSO years the stock has lower sustainable harvest rates and wider 
fluctuations than during normal, cold water periods. 

10. Actual harvest rates during warm, ENSO years as well during cold, normal periods have 
been close to half the sustainable harvest rates of each period, further demonstrating 
that the stock was not overfished up to 2019. 

 

7. MANAGEMENT ADVICE 
 

This management advice is exclusively connected to the biological condition of the stock of 
dolphinfish in the South East Pacific and to key fishery factors such as fishing mortality and 
environmental fluctuations. Thus it is made without consideration of the wider social and 
economic context of the fishery. 
 
1. Continue the data collection program and the growth of the stock assessment database 

to update the assessments at annual time steps. 
2. Explore further improvements in the stock assessment database by extending intro- 

ducing a local length-weight relationship. 
3. Update the stock assessment with data from years after 2019 and update the status of 

the fishery. 
4. Conditional upon confirmation with further data of the status of the stock, develop a 

plan to gradually increase fishing effort and thus yield better outcomes from the fishery 
for fishers, consumer and exporters, up to a level to be determined and below the level 
required to harvest the total average latent productivity annually. 

5. Considering the biological, fishery and genetic divergences of mahi mahi between 
Peru and Ecuador, the next step to evaluate is the development of separate stock 
assessments. 

 

8. REFERENCES 
 

[1] B. Palko, G. Beardsley, and W. Richards, “Synopsis of the biological data on 
dolphinfishes, Coryphaena hippurus linnaeus and Coryphaena equiselis 
linnaeus,” NOAA Tech. Rep. NMFS Circ., vol. 443, pp. 1–28, 1982. 

[2] FAO, “The state of world fisheries and aquaculture 2020. sustainability in action,” tech. 
rep., Food and Agriculture Organization of the United Nations, 2020. 

[3] R. Mahon and H. Oxenford, “Precautonary assessment and management of dolphinfish  
in the Caribbean,” Scientia Marina, vol. 63, pp. 429–438, 1999. 



 

34 
 

[4] K. Schwenke and J. Buckel, “Age, growth, and reproduction of dolphinfish (Coryphaena 
hippurus) caught off the coast of North Carolina,” Fishery Bulletin (U.S.), vol. 
59, pp. 82–92, 2008. 

[5] D. Benjamin and B. Kurup, “Stock assessment of dolphinfish, Coryphaena hippurus 
(linnaeus, 1758) off southwest coast of India,” J. Mar. Biol. Ass. India, vol. 54, pp. 
95– 99, 2012. 

[6] A. Baset, T. Haneef, A. Waris, B. Liao, A. Memon, E. Karim, and M. Ismail, 
“Maximum sustainable yield of dolphinfish, Coryphaena hippurus (linnaeus, 1758) 
fishery in Pakistan,” Journal of Animal Science and Research, vol. 2, pp. 1–5, 
2020. 

[7] D. Hoggarth, S. Abeyasekera, R. Arthur, J. Beddington, R. Burn, A. Halls, G. 
Kirkwood, M. McAllister, P. Medley, C. Mees, G. Parkes, G. Pilling, R. 
Wakeford, and R. Welcomme, “Stock assessment for fishery management,” Tech. 
Rep. FAO Fisheries Technical Paper 487, FAO, Rome, 2006. 

[8] A. A. da Silva, J. Valero, M. Maunder, C. Minte-Vera, C. Lennert-Cody, M. Román, 
J. Martínez-Ortiz, E. Torrejón-Magallanes, and M. Carranza, “Exploratory stock 

assessment of dorado (Coryphaena hippurus) in the southeastern pacific 
ocean,” Tech. Rep. DOCUMENT SAC-07-06a(i), INTER-AMERICAN TROPICAL 
TUNA COMMISSION, 2016. 

[9] R. Methot and C. Wetzel, “Stock synthesis: A biological and statistical framework 
for fish stock assessment and fishery management,” Fisheries Research, vol. 142, pp. 
86–99, 2013. 

[10] F.C. II, “Report of the CopeMed II MedSudMed workshop on the status of Coryphaena 
hippurus fisheries in the Western-Central Mediterranean, Cádiz, Spain, 8-9 
october 2019,” Tech. Rep. FAO Technical Document 54, FAO GCP/INT/028/SPA- 
GCP/INT/362/EC, 2019. 

[11] V. Moltó, P. Hernández, M. Sinopoli, B. Benseddik, R. Besbes, A. Mariani, M. Gambin, 
F. Alemany, B. Morales-Nin, A. Grau, J. C. nas, J. Báez, M. Vasconcellos, L. Ceriola, and I. 

Catalán, “A global review on the biology of the dolphinfish (Coryphaena hippurus) 
and its fishery in the mediterranean sea: Advances in the last two decades,” 
Reviews in Fisheries Science & Aquaculture, vol. 28, pp. 376–420, 2020. 

[12] R. H. Roa-Ureta, “Modeling inseason pulses of recruitment and hyperstability- 
hyperdepletion in the Loligo gahi fishery of the Falkland Islands with generalized 
depletion models,” ICES Journal of Marine Science, vol. 69, pp. 1403–1415, 
2012. 

[13] R. H. Roa-Ureta, “Stock assessment of the Spanish mackerel (Scomberomorus 
commerson) in Saudi waters of the Arabian Gulf with generalized depletion 
models under data–limited conditions,” Fisheries Research, vol. 171, pp. 68–77, 
2015. 

[14] R. H. Roa-Ureta, C. Molinet, N. Barahona, and P. Araya, “Hierarchical statistical 
framework to combine generalized depletion models and biomass dynamic models 
in the stock assessment of the Chilean sea urchin (Loxechinus albus) fishery,” 
Fisheries Research, vol. 171, pp. 59–67, 2015. 

[15] Y. J. Lin, W. N. Tzeng, Y. S. Han, and R. H. Roa-Ureta, “A stock assessment model for 
transit stock fisheries with explicit immigration and emigration dynamics: 
application to upstream waves of glass eels,” Fisheries Research, vol. 195, pp. 
134–140, 2017. 



 

35 
 

[16] R. H. Roa-Ureta, M. N. Santos, and F. Leitão, “Modelling long-term fisheries data to 
resolve the attraction versus production dilemma of artificial reefs,” Ecological 
Modelling, vol. 407, p. 108727, 2019. 

[17] R. H. Roa-Ureta, J. HenrĂquez, and C. Molinet, “Achieving sustainable exploitation 
through co-management in three chilean small-scale fisheries,” Fisheries Research, 
vol. 230, p. 105674, 2020. 

[18] R. H. Roa-Ureta, CatDyn: Fishery Stock Assessment by Generalized Depletion 
Models, 2015. R package version 1.1-1. 

[19] Scientific Advisory Committee on Fisheries, “Working group on stock assessment of 
small pelagic species (WGSASP),” tech. rep., FAO General Fisheries Commission for 
the Mediterranean, 2021. 

[20] V. Moltó, I. Catalán, A. Ospina-Álvarez, P. Hernández, and R. H. Roa-Ureta, “A mul- 
tiannual five fleet generalized depletion model for the stock assessment of the 
mediterranean dolphinfish (Coryphaena hippurus) fishery,” ICES Journal of 
Marine Science, vol. 79, pp. 1481–1496, 2022. 

[21] A. A. da Silva, C. Lennert-Cody, M. Maunder, M. Román-Verdesoto, C. Minte-Vera, 
N. Vogel, J. Martínez-Ortiz, J. Carvajal, P. Guerrero, and F. Sondheimer, “Preliminary 

results from IATTC collaborative research activities on dorado in the eastern 
pacific ocean and future research plan,” Tech. Rep. DOCUMENT SAC-05-11b, INTER- 
AMERICAN TROPICAL TUNA COMMISSION, 2014. 

[22] S. Yang, Z. Li, J. Y. YU, X. Hu, W. Dong, and S. He, “El niño southern oscillation and 
its impact in the changing climate,” National Science Review, vol. 5, pp. 840–857, 
2018. 

[23] T. Berger and F. Sibeni and F. Calderini, FishStatJ. 
[24] R Core Team, R: A Language and Environment for Statistical Computing. R 

Foundation for Statistical Computing, Vienna, Austria, 2020. 
[25] R. C. Team, “R: A language and environment for statistical computing.” https://www. 

R-project.org/, 2021. 
[26] S. van Buuren and K. Groothuis-Oudshoorn, “mice: Multivariate imputation by chained 

equations in r,” Journal of Statistical Software, vol. 45, no. 3, pp. 1–67, 2011. 
[27] M. Zuniga-Flores, Dinámica poblacional del dorado (Coryphaena hippurus) en Baja 

California sur, México: implicaciones para su manejo. PhD thesis, Instituto 
Politécnico Nacional, La Paz, México, 2009. 

[28] R. H. Roa-Ureta, M. del Pino Fernández-Rueda, J. L. A. na, A. Rivera, R. González-Gil, 
and L. García-Flórez, “Estimation of the spawning stock and recruitment 
relationship of Octopus vulgaris in asturias (bay of biscay) with generalized 
depletion models: implications for the applicability of msy,” ICES Journal of 
Marine Science, p. fsab113, 2021. 

[29] F. Maynou, “Application of a multi-annual generalized depletion model to the 
assessment of a data limited coastal fishery in the western mediterranean,” 
Scientia Marina, vol. 79, pp. 157–168, 2015. 

[30] F. Maynou, M. Demestre, P. Martín, and P. Sánchez, “Application of a multi-annual 
generalized depletion model to the mediterranean sandeel fishery in catalonia,” 
Fisheries Research, vol. 234, p. 105814, 2021. 

[31] B. Meissa, M. Dia, B. C. Baye, M. Bouzouma, E. Beibou, and R. H. Roa-Ureta, “A 
comparison of three data-poor stock assessment methods for the pink spiny lobster 
fishery in mauritania,” Frontiers in Marine Science, vol. 8, p. 714250, 2021. 

https://www.r-project.org/
https://www.r-project.org/


 

36 
 

[32] J. Nash and R. Varadhan, “Unifying optimization algorithms to aid software system 
users: optimx for r,” Journal of Statistical Software, vol. 43, pp. 1–14, 2011. 

[33] H. H. Lee, M. Maunder, K. Piner, and R. Methot, “Estimating natural mortality within 
a fisheries stock assessment model: An evaluation using simulation analysis based 
on twelve stock assessments,” Fisheries Research, vol. 109, pp. 89–94, 2011. 

[34] S. Anderson, C. Monnahan, K. Johnson, K. Ono, and J. Valero, “ss3sim: An r package 
for fisheries stock assessment simulation with stock synthesis,” PLoS ONE, vol. 
9(4), p. e92725, 2014. 

[35] F. Hurtado-Ferro, C. Szuwalski, J. Valero, S. Anderson, C. Cunningham, K. Johnson, 
R. Licandeo, C. McGilliard, C. Monnahan, M. Muradian, K. Ono, K. Vert-Pre, A. Whitten, and 

A. Punt, “Looking in the rearview mirror: bias and retrospective patterns in  
integrated, age structured stock assessment models,” ICES Journal of Marine 
Science, vol. 72, pp. 99–110, 2015. 

[36] J. Thorson, A. Hicks, and R. Methot, “Random effect estimation of time varying factors 
in stock synthesis,” ICES Journal of Marine Science, vol. 72, pp. 178–185, 2015. 

[37] K. Patterson, “Fisheries for small pelagic species: an empirical approach to 
management targets,” Reviews in Fish Biology and Fisheries, vol. 2, pp. 321–
338, 1992. 

[38] C. Wang, “A review of enso theories,” National Science Review, vol. 5, pp. 813–
825, 2018. 

[39] R. D. T.J. Quinn II, Quantitative Fish Dynamics. New York: Oxford University Press, 
1999. 

[40] D. Fournier, J. Skaug, J. Ancheta, J. Ianelli, A. Magnusson, and M. Maunder, “Ad model  
builder: using automatic differentiation for statistical inference of highly 
parameterized complex nonlinear models,” Optimization Methods and Software, 
vol. 27, pp. 233–249, 2012. 

[41] A. Magnusson, ADMB-IDE: Easy and efficient user interface. ADMB Foundation, 
2009. 


