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Abstract17

The flying jumbo squid fishery is one of the largest fisheries of the world and18

the largest invertebrate fishery. In the region of the South-East Pacific Ocean19

(SEP) it is fished in four sub-regions: Ecuadorian, Peruvian and Chilean exclusive20

economic zones (EEZ), and international waters off those EEZs. In this meeting21

of OROP-PS, the CALAMASUR group is proposing a regional stock assessment22

model that includes flows among these sub-regions (Wiff and Roa-Ureta, 2021).23

Therefore the question arises: is there any evidence for flows of the stock among24

sub-regions? In this note I explored this issue by modelling Ecuadorian catch, effort25

and mean weight data taken during 2018 using intra-annual generalized depletion26

models (Roa-Ureta, 2012). The model runs on weekly time steps and the presence27

of pulses of abundance that enter the Ecuadorian sub-region is tested by fitting28

models with 1, 2, 3 and 4 pulses of abundance. Under the hypothesis that there29
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are incoming pulses of abundance, the best model should have more than one pulse30

of abundance, while under the alternative hypothesis of no flows from outside the31

Ecuadorian sub-region, the best model should have just one pulse of abundance,32

the pulse corresponding to the annual recruitment of squids that grow to the size33

captured and retained by the fishing gears. We show here that the best model for34

the Ecuadorian weekly catch, effort and mean weight data is a model with three35

pulses of abundance, thus supporting the hypothesis in the conceptual proposal of36

Wiff and Roa-Ureta (2021).37

Keywords: stock assessment; generalized depletion models; flying jumbo squid; South-East38

Pacific39

1 Introduction40

The flying jumbo squid fishery extends over the whole Eastern Pacific Ocean yielding the41

largest volume of landings of any invertebrate fishery worldwide, reaching over a million42

tonnes in recent years (Fig. 1). In 2014 Ecuadorian artisanal fleets joined the exploitation43

of this large stock with significant catches, reaching a maximum in 2018, with over 3044

thousand tonnes.45

In 2018, the Instituto Público de Investigación de Acuicultura y Pesca (IPIAP) of46

Ecuador carried out an extensive sampling program of the catch of the jumbo squid stock47

by an artisanal fleet using a variety of fishing gears but mainly jigging. This program48

covered 2162 fishing trips over the whole year, and they accounted for 6% of the total49

Ecuadorian catch of the jumbo squid that year. In this note I use these catch and fishing50

effort data from 2018, along with mean weight data taken in separate sampling effort, to51

fit an intra-annual generalised depletion model (Roa-Ureta, 2012). This idea follows the52

advice of an international team of experts that reviewed the state of of stock assessment53

modelling of cephalopod fisheries (Arkhipkin et al., 2021). The model will not evaluate54

absolute stock abundance because not all the catch and fishing effort are included in the55

data. Nevertheless, the model will be used to test the hypothesis of the existence of56

multiple inputs of abundance to the Ecuadorian sub-region.57

In a separate note (Wiff and Roa-Ureta, 2021) we are proposing a regional stock58

assessment model based on multi-annual generalised depletion models (Roa-Ureta, 2015;59

Roa-Ureta et al., 2019) with flows of stock among all sub-regions in the wider South-East60

Pacific Ocean. Under the proposed region-wide stock assessment model, there are several61

inputs and outputs of stock abundance due these flows among sub-regions. Therefore,62

the present note is a proof of concept for the viability of the regional stock assessment63

proposal in Wiff and Roa-Ureta (2021).64
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Figure 1: Historical landing records of the flying jumbo squid in FAO database (FAO,

2021) in the South-Eastern Pacific Ocean.

2 Ecuadorian Data65

The sampling program conducted by IPIAP in 2018 recorded the catch and several other66

identification and classification measures per fishing trip with dates of sailing and arrival67

to port of 2162 fishing trips. No specific measure of fishing effort (such as number of68

time spent fishing) was recorded. I turned these granular data into a weekly aggregation69

of catch by all boats sampled during any given week. To match that catch, as a result,70

with a suitable measure of fishing effort, as one of the causes of the catch, I counted the71

number of fishing trips per week.72
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Figure 2: Fishing effort and catch relationship in the sample of fishing trips of the Ecuado-

rian jumbo squid fishery conducted by IPIAP.

Fig. 2 shows the resulting connection between fishing effort and catch. There is a73

very strong connection between the chosen measure of fishing effort and the resulting74

catch for the sample of fishing trips in IPIAP’s database. This was to be expected given75

the large fraction (6%) of the total Ecuadorian catch that was covered by this sample of76

fishing trips.77

An additional database compiled and curated by IPIAP included 6798 individual78

squids sampled from the commercial catch during the period 2013 to 2020. This database79

contained data on mantle weight with the month of the sample being recorded. I used80

R package MMWRweek (Niemi, 2020) to assign week of the year to the monthly mantle81

weight data at a randomly selected day within the month. This allowed matching the82

fishing effort and catch data with the mean weight data at the cost of introducing some83

timing noise. Further random noise was added to this weekly mantle weight data by84

sampling from truncated normal distributions using R package Runuran (Leylold and85

Hormann, 2020) and the mean mantle weight data and its standard deviation. In this86

manner the mantle weight data matched to fishing effort and catch data added sampling87

variation in the biological sampling to the model. The resulting mean mantle weight88

vector for the model as well as the original data are shown in Fig. 3.89
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Figure 3: Mean monthly weight of jumbo squid in IPIAP’s database (yellow dots) and

the re-sampled mean weight per week to use in the model (red dots).

3 Intra-Annual Generalised Depletion Model90

Generalised depletion models are depletion models for open populations with nonlinear91

dynamics. Intra-annual versions work with rapid time step data and are fitted to one92

season of fishing (Roa-Ureta, 2012; Roa-Ureta et al., 2015, 2021). In this application, the93

general form of the model is94

Ct = kEα
t N

β
t

Ct = kEα
t e

M/2

(
N0e

−Mt − eM/2

[
i=t−1∑
i=1

Cie
−M(t−i−1)

]
+

J∑
j=1

IjPje
−M(t−τj)

)β

(1)

where t is a week of the year, C is the expected catch under the model, k is the scaling,95

a proportionality constant which is comparable to catchability (although more general,96

see Roa-Ureta (2012)) having units of effort−1 × abundance−1, E is the fishing effort E97

modulated by the effort-response parameter α, N is stock abundance modulated by the98

abundance-response parameter β, M is the weekly natural mortality rate, N0 is initial99
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abundance, Ij is an indicator variables taking values of 0 before an exogenous pulse100

of abundance enters the vulnerable stock, and 1 afterwards, J is the total number of101

abundance pulses, Pj is the magnitude of pulse of abundance j, and tauj is the week at102

which pulse of abundance j happens along the season. I fitted models of this kind with103

J taking values of 1, 2, 3 and 4, thus describing hypotheses with different numbers of104

in-season exogenous pulses of abundance.105

The model in Eq. 1, in its four variants (J = 1, 2, 3, 4) is the process model, the106

postulated mechanism linking the true catch Ct to fishing effort and abundance, which107

is assumed to be fairly complete and exact, with negligible process error. The true catch108

time series however, is not observed. Instead, a random time series χf,t is observed109

and its expected value is Cf,t. Thus the catch time series is a random variable and the110

stock assessment model is completed with a statistical model where χf,t has a probabil-111

ity distribution, a specific parametric distribution. In this proposal, two distributions112

were implemented for each fleet, normal and lognormal, corresponding with additive or113

multiplicative hypotheses for the observations of catch. In implementing the normal and114

lognormal distributions for the fleet’s catch data, I fitted models with the exact nor-115

mal and exact lognormal distributions and adjusted profile approximations, where the116

dispersion parameters are eliminated from the inference. These approximations are as117

follows,118

lp(θθθ; {χt, Et}) =


T−2
2
log
(∑T

i=1(χt − Ct)2
)

Normal

T−2
2
log
(∑T

i=1(log(χt)− log(Ct))
2
)

Lognormal
(2)

where lp is the negative log-likelihood function, θθθ is the vector of parameters, {χt, Et} are119

the catch and effort data, Ct is the predicted catch according to the model in Eq. 1, and120

T is the total number of weeks. These negative log-likelihood functions are minimised121

numerically as a function of θθθ to estimate maximum likelihood parameter values and their122

covariance matrix. The free parameters vector is θθθ = (N0,M, k, α, β, {P}). The model123

was fit using R package CatDyn (Roa-Ureta, 2018).124

4 Results125

None of the intra-annual generalised depletion models with two in-season exogenous in-126

puts of abundance yielded successful numerical convergence results. Furthermore, all127

model variants fitted to the lognormal distribution (both the exact version and the ad-128

justed profile approximation) yielded poor numerical results, with large absolute values129

of numerical gradients and/or pathological Hessian matrix, or did not converge at all.130

Thus model selection is restricted to variants with 1, 3 or 4 exogenous in-season pulses131

of abundance and the exact and adjusted profile approximation to the normal likelihood.132
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Table 1: Akaike information criterion (AIC) for the selection of the best working model

in Eq. 1 in four version, with 1, 3 or 4 in-season exogenous pulses of abundance.

Variant Likelihood AIC Best model

1 A.P. normal 524

3 A.P. normal 492 1

4 A.P. normal 494

1 Exact normal 494

3 Exact normal 460 1

4 Exact normal 462

Figure 4: Top panel: fit of the intra-annual generalised depletion model to the catch and

fishing effort data of the Ecuadorian sampled fleet during 2018 (target symbols indicate

weeks at which the inputs of abundance happened). Bottom left panel: histogram of

residuals. Bottom mid panel: cloud of residuals. Bottom right panel: quantile-quantile

plot.

Under both versions of the normal likelihood, the Akaike Information Criterion iden-133

tifies the model with three pulses of abundance as the best working model (Table 1).134

To select between these two variants, we note that the mean coefficient of variation of135
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parameters estimated under the adjusted profile normal variant was 79.5% while the136

same average for the model variant fitted with the exact normal likelihood was 119.5%.137

Therefore, on account of better precision of estimates, the 3-inputs of abundance model138

fitted with the adjusted profile normal approximation to the likelihood was retained as139

the best working model.140

The fit of this model to the data is shown in Fig. 4. The top panel shows model141

predicted catch and observed catch in numbers of squids. Bottom panels are diagnostics142

plots to check the quality of the fit from several measures from the distribution of residu-143

als. It is noted that in addition to having model predictions that closely follow the data,144

diagnostic residual analysis indicate a good fit of the model to the data, with symmetric145

residuals histogram, a shapeless cloud of residuals, and very good connection between146

quantiles of the observed and predicted random variable.147

Another useful diagnostics plot is the histogram of correlation coefficients between148

parameter estimates. A good model must have those correlation coefficients well-centred149

around zero, meaning that all parameters make unique and necessary contributions to the150

fit of the data. Although this histogram for the selected model (Fig. 5) is quite broad, it151

is concentrated around 0. It could be noted as well that other model variants had worse152

or similar histogram of correlations. Thus this additional diagnostic examination further153

supports the result that the model with three exogenous in-season pulses of abundance154

and the adjusted profile normal distribution for the data is the best working model.155

Figure 5: Histogram of correlation coefficients between parameter estimates of the best

generalised depletion model for the catch and fishing effort data of the Ecuadorian sam-

pled fleet during 2018.

8



5 Discussion156

Under the hypothesis that the inputs of jumbo squid abundance to the vulnerable stock157

during the 2018 season in Ecuadorian waters happen only because of somatic growth, i.e.158

squids becoming large enough to be vulnerable to the various gears employed to fish them,159

we would expect a single pulse of abundance in a generalised depletion model. This would160

be the annual pulse of recruitment to the fishery. This is not what we have obtained.161

We have found that the best model includes three pulses of abundance. Moreover, two of162

those pulses of abundance happened in April, and the third one happened in September,163

which is very far apart along the season. When examining the variation in monthly164

weight (Fig. 3 we find that in April the mean weight is one of the lowest along the year165

while in September the opposite is true. Therefore, those two pulses of abundance in166

April probably are the annual recruitment due to growth while the pulse in September is167

more likely the result of immigration.168

6 Conclusions169

• A database of fishing effort and catch at rapid time steps plus mean weight data170

allows assessment of the jumbo squid fishery in the South-East Pacific with gener-171

alised depletion models.172

• Intra-annual generalised depletion modelling with Ecuadorian data from one year173

supports the regional stock assessment model proposal by Wiff and Roa-Ureta174

(2021) in the sense that it provides evidence in favour of the existence of flows175

among sub-regions in the wider regional context.176

• Generalised depletion models are appropriate to assess the jumbo squid fishery in177

the South-East Pacific.178
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